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Abstract
We consider a viscoelastic rod with a concentrated mass at its end. The mass
is moving along the straight line that coincides with the rod axis. The mass is
connected by a linear spring and a known active force is acting on it. We assume
that the rod is light and described by fractional dissipation. The dynamics of
such a system constitutes a problem of a fractional oscillator. In this paper, we
shall study some properties of the solutions for the distributed-order fractional
derivative viscoelastic rod.

PACS numbers: 46.70.De, 83.60.Bc

1. A viscoelastic rod with concentrated mass at the end

Let σ(x, t) and ε(x, t) be a stress and strain, respectively, in the linear stress state at the point
x and at the time instant t . We assume that x ∈ [0, l] where l is the length of the body. In [3],
a constitutive equation was proposed for a linear viscoelastic body in a distributed order form
as3 ∫ 1

0
φσ (γ )σ (γ )(x, t) dγ =

∫ 1

0
φε(γ )ε(γ )(x, t) dγ, (1)

where

D
(α)
t σ (x, t) = σ (α)(x, t) = d

dt

1

�(1 − α)

∫ t

0

σ(x, t − ξ) dξ

ξα
, (2)

is used to denote α—the derivative of σ(t) with respect to time, in the Riemann–Liouville
form (see [22]). A special case of (1) is the so-called three-parameter model treated in [10],

3 In the case when φσ and (or) φε have terms containing the Dirac distribution the integrals in (1) are not Riemann
but Stieltjes integrals. Thus, for example

∫ 1
0 σσ δ(γ − α) dγ in (1) should be interpreted as

∫ 1
0 σσ δ(γ − α) dγ ≡∫ 1

0 σσ dψσ (γ ) where ψσ (γ ) =
{0, 0 < γ < α

1, γ � α.
In general, it is assumed that ψ is a Borel-measurable function of

normalized bounded variation.

0305-4470/05/306703+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 6703
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Figure 1. Coordinate system and force configuration.

for example. Many other models of viscoelastic bodies, used earlier, may be considered as a
special case of (1). For example, if we take

φσ = [(τ̆σ )γ δ(γ − α) + δ(γ )], φε = E[(τ̆ε)
γ δ(γ − α) + δ(γ )], (3)

where τ̆σ , τ̆ε and E are constants and δ(γ ) is the Dirac distribution, we obtain

σ + (τ̆σ )ασ (α) = E[(τ̆ε)
αε(α) + ε], (4)

i.e., the generalized Zener model of a viscoelastic body (see [2]). Note also that a special case
of (1) with

φσ = δ(γ ) + τσ δ(γ − α), φε(γ ) = E[δ(γ ) + τεδ(γ − α) + τβδ(γ − β)], (5)

leads to the generalized Kelvin–Voigt model that was recently analysed in [21]. For other
applications of the distributed-order equations, see [7, 8, 11].

The important problem of the theory of constitutive equations is to formulate the
restrictions on the coefficients, or functions, in the constitutive equation that follows from
the second law of thermodynamics. Either the internal variable method (see [2] and references
given there) or the method based on Fourier transforms (see [6] or [21]) is used. We shall not
address this question here (see [4] where the problem was treated).

We assume that φσ (γ ) = aγ , φε(γ ) = �bγ . The second law of thermodynamics requires
(see [4]) that � > 0, 0 < a < b. With these functions, (1) becomes∫ 1

0
aγ σ (γ )(x, t) dγ = �

∫ 1

0
bγ ε(γ )(x, t) dγ. (6)

The constants a and b have dimensions of time and have the meaning of relaxation times for
stress and strain, respectively.

For the case of a linear state of strain, we have ε = [∂u(x, t)/∂x], where u(x, t) is the
displacement of the point of the rod at the position x at time instant t . Thus, (6) becomes∫ 1

0
aγ σ (γ )(x, t) dγ = �

∫ 1

0
bγ

[
∂u(x, t)

∂x

](γ )

dγ. (7)

A model example of a mechanical system that leads to the equations that we shall study is
a light viscoelastic rod of undeformed length l made of material described by (7) and a linear
spring with spring constant c. The system is shown in figure 1.

Suppose that the rod is fixed at one end and that at the other end a body B of mass m is
fixed. Also, we assume that B moves along the straight line coinciding with the rod axis, and
that a prescribed force h(t) is acting on it. The equation of the motion for the rod reads

∂σ(x, t)

∂x
= ρ

∂2u(x, t)

∂t2
, (8)
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subject to

u(0, t) = 0, Aσ(l, t) + m
∂2u(l, t)

∂t2
= h(t). (9)

where A is the cross-sectional area of the rod and ρ is the mass density of the rod. Since
the rod is light, i.e., the density ρ is zero, we conclude from (8) that ∂σ (x,t)

∂x
= 0, i.e., σ is

independent of x.
Let y(t) = u(l, t) be the displacement of the body B from its initial position. Then

we assume that the position of the material point that was at x in the undeformed state, in
the deformed state is at x + x

y(t)

l
. With this assumption the displacement vector becomes

u = x
y(t)

l
, so that the strain ε(x, t) = ∂u(x, t)/∂x = y(t)

l
is independent of x. Therefore, (7)

becomes ∫ 1

0
aγ σ (γ )(t) dγ = �

l

∫ 1

0
bγ y(γ )(t) dγ. (10)

The equation of motion for the body B reads

my(2)(t) +
c

l
y(t) + Aσ(t) = h(t), (11)

Equation (11) is of the type

y(2)(t) + ω2y + βσ(t) = h(t), (12)

where ω2 = c
ml

and (see 10)∫ 1

0
aγ σ (γ )(t) dγ = λ

∫ 1

0
bγ y(γ )(t) dγ, (13)

and β > 0, λ > 0. The forcing function h(t) is assumed to be known. To (12), we adjoin the
following initial conditions:

y(0) = y0, y(1)(0) = v0. (14)

We shall treat the fractional oscillator described by (12)–(14). For other treatments of
fractional oscillators see, for example, [5, 9, 14, 17–19].

2. Some properties of the solution to (12)–(14)

The formal use of the Laplace transform to system (12)–(14) shows that the framework for
solving this system is in fact the space K′

+. It will be shown that σ ∈ K′
+ and y ∈ S ′

+. Recall,
K′

+ is the space of exponentially bounded distributions (cf [1, 16]) supported by [0,∞). This
space is related to the well-known space S ′

+ [24] of tempered distributions supported by [0,∞)

via: f ∈ K′
+ if and only if f = ekxF, for some k � 0 and some F ∈ S ′

+.4 The framework
of K′

+ enables the use of the Laplace transform. We give brief explanations concerning these
spaces in the appendix.

Formally, applying the Laplace transform to (13) we obtain

as − 1

ln(as)
σ̂ (s) = λ

bs − 1

ln(bs)
ŷ(s), Re s > 0, (15)

where ŷ(s) = L(y)(s) = ∫ ∞
0 e−st y(t) dt, Re s > 0, is the Laplace transform of y. Actually,

we have to prove that y and σ are elements of K′
+ and to interpret the above integral form of

4 Note that S ′
+ ⊂ K′

+.
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the Laplace transform in the sense of exponential distributions. We will do this later and this
implies that the procedure which is to follow is legitimate. From (15), we obtain (Re s > 0)

σ̂ (s) = λ
ln(as)

ln(bs)

bs − 1

as − 1
ŷ(s). (16)

Applying now the Laplace transform to (12) and using (16), we get

ŷ(s) = y0s + v0 + ĥ(s)

F (s)
, (17)

where

F(s) = s2 + ω2 + λβ
ln(as)

ln(bs)

bs − 1

as − 1
. (18)

Proposition 1. For the system (12), (13) we have y ∈ S ′
+ and σ ∈ K′

+.

Proof. In order to prove that y ∈ S ′
+, we need an estimate of J (s) where

J (s) = (s2 + ω2)(ln bs)(as − 1) + λβ(ln as)(bs − 1), Re s > 0. (19)

There exists C > 0 such that

|J (s)| > C, Re s > 0. (20)

So let us prove (20). Note that if ε > 0 is small enough, then there exists d > 0 such that

(|s| � ε)(Re s > 0) ⇒ (|J (s)| > d). (21)

This is a consequence of the fact that lim|s|→0 = |ω2 + λβ|.
Further, for any R > 0 there exists d1 > 0 such that

(|s| ∈ [ε, R])(Re s > 0) ⇒ (|J (s)| > d1). (22)

We can enlarge R so that

|s2 − ω2| � R2 − |ω2|, |as − 1‖ln bs| � 1
2 |as‖ln bs|.

With this and |ln bs| = |ln R + ln b + i arg s| � (ln R + ln b − π/2), we have

|J (s)| � aR

2
(R2 − |ω2|)(ln b + ln R − π/2) − |λβ|(bR(ln a + ln R + π/2) + 1) � R. (23)

Now by (21)–(23), the proof of (20) follows.
For the next estimate, we use the elementary inequality for a polynomial of order 2 and

ln|s| � |s| + 1/|s|, s ∈ C. By (20), it follows that there exists (another) C > 0 such that

|̂y(s)| =
∣∣∣∣ (y0s + v0 + ĥ(s))(ln bs)(as − 1)

J (s)

∣∣∣∣
� C(1 + |s|)2(|̂h(s)| + 1)

(
1

|s| + |s|
)

. (24)

(Note, h ∈ S ′
+.) Recall the characterization of S ′

+ (see [24]):

g ∈ S ′
+ ⇔ |̂g(s)| � C

|Re s|p
(1 + |Im s|q) for some C > 0 and p, q ∈ R, (25)

for h, (23) and (24), it follows that ŷ satisfies (25) with another constant and thus, y ∈ S ′
+.

We will show that σ ∈ K′
+ by explicit calculation.

Denote

φ1 = L−1

(
ln as

ln bs

)
, φ2 = L−1

(
bs − 1

as − 1

)
,



On a fractional distributed-order oscillator 6707

where the Laplace transformation is taken in the sense of tempered distributions. We have

φ1 = L−1

(
1 +

ln a − ln b

ln b + ln s

)
= δ + ln

a

b
L−1

(
1

ln b + ln s

)
,

where δ is the delta distribution. Note that L(b−t )(s) = (s + ln b)−1, Re s > 0. This and [13],
(29), p 132, imply

L−1

(
1

ln b + ln s

)
(t) =

∫ ∞

0

tu−1 e−u ln b

�(u)
du, t > 0.

Here, we note that for some k > 0 and C > 0, which depend on b,∣∣∣∣
∫ ∞

0

tu−1 e−u ln b

�(u)
du

∣∣∣∣ � C ekt , t > 0.

and that this integral is not polynomially bounded. Thus, this integral defines an element of
K′

+\S ′
+.

We have

φ1(t) = δ(t) + ln
a

b

∫ ∞

0

tu−1b−u

�(u)
du, φ2(t) = b

a
δ(t) +

b − a

a2
et/a, t > 0, (26)

and both distributions are equal to 0 on (−∞, 0). Clearly, both distributions are elements of
K′

+. The same holds for

σ(t) = λφ1 ∗ φ2 ∗ y(t) (27)

since K′
+ is a commutative and associative algebra under convolution. �

For the function F(s) we have the following:

Proposition 2. Let F0 be the principal branch of F, i.e. the branch for which ln z = ln|z| +
i arg z, where |arg z| < π . If λβ > 0 and b > a > 0, then F0 has exactly two zeros which are
simple, conjugate and placed in the open left half-plane.

Proof. Clearly,

F0(s) = F0(s), s ∈ C (28)

and this implies that F0(s0) = 0 if F0(s0) = 0. Let us prove that F0 has exactly two zeros. We
will prove this with the argument principle. Consider the domain

� = {s ∈ C : 0 < r < |s| < R, |arg s| < π}
and let Cr,R be its boundary.

Put s = R eit , 0 � t � π . Then F0(R) > 0 and

F0(R eit ) = R2 e2it

(
1 +

ω2

R2 e2it
+

βλ

R2 e2it

ln aR + it

ln bR + it

bR eit − 1

aR eit − 1

)
.

As the expression in the parentheses tends to 1 as R → ∞, we conclude that on the semicircle
s = R eit ; 0 � t � π .

lim
R→∞

�Arg F0(s) = 2π, (29)

where � denotes the variation.
Put s = t eiπ , r � t � R. The imaginary part of F0(s) satisfies

Im F0(t eiπ ) = λβ
bt + 1

at + 1

π(ln b − ln a)

π2 + ln2 bt
> 0
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and tends to 0 as t → 0 or t → ∞. Thus, we conclude that on this part of the ray (if �

denotes a variation)

lim
r→0,R→∞

�Arg F0(s) = 0. (30)

Put s = r eit , 0 � t � π , and observe that

lim
r→0

F0(r eit ) = ω2 + λβ,

which implies that on this semicircle

lim
r→0

�Arg F0(s) = 0. (31)

Now, according to the argument principle, relations (28)–(31) imply

N = 1

2π
�Arg F0(s) = 1

2π
× 2 × 2π = 2,

where N denotes the number of zeros of F0 in the domain.
Now we will prove that F0 does not have zeros in the right half-plane. Consider the

domain

�∗ = {s ∈ C : 0 < r < |s| < R, |arg s| < π/2}
and let C∗

r,R be its boundary. Put s = R eit , 0 � t � π
2 . Similarly, as in the first part, we

conclude that

lim
R→∞

�Arg F0(s) = π. (32)

Put s = t eiπ/2, r � t � R. The imaginary part of F0(s) satisfies

Im F0(t eiπ/2) = λβ

π
2 (1 + abt2) ln b

a
+ t (a − b)

(
π2

4 + ln at ln bt
)

(a2t2 + 1)
(

π2

4 + ln2 bt
) > 0. (33)

We conclude that on this interval

lim
r→0,R→∞

�Arg F0(s) = −π. (34)

Using the argument principle, relation (28) and relations (29), (30) and (32) it follows

N = 1

2π
× 2 × (π − π) = 0.

This completes the proof. �

Remark 3. Positivity of (33) is equivalent to the positivity of

φ(u, v) = π

2
(1 + uv) ln

v

u
+ (u − v)

(
π2

4
+ ln u ln v

)
, v > u > 0,

or

ψk(t) = π

2
(1 + kt2) ln k + t (1 − k)

(
π2

4
+ ln t ln kt

)
, t > 0, k > 1.
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ε

Figure 2. Integration contour γ0.

3. Integral form of solutions

Recall,

Ly(s) = (y0s + v0 + ĥ(s))(ln bs)(as − 1)

(s2 + ω2)(ln bs)(as − 1) + λβ(ln as)(bs − 1)
; Re s > 0, (35)

Lσ(s) = λ
ln(as)

ln(bs)

bs − 1

as − 1
ŷ(s). (36)

Applying the inverse Laplace transform to (35), we have

y(t) = 1

2π i

∫
γ

estLy(s) ds, t � 0, where γ = {s; Re s = σ, σ > σ0 = 0}.
Let γ0 be the contour on figure 2. Cauchy’s formula gives∫

γ0

estLy(s) ds = 2π i
∑

Re s{estLy(s)}. (37)

Integrals ∫
BD

estLy(s) ds,

∫
GA

estLy(s) ds and
∫

FE

estLy(s) ds

tend to 0 when R → ∞ and ε → 0 so they do not contribute to the left-hand side of (37).
What contribute to the left-hand side of (37) are integrals∫

AB

estLx(s) ds,

∫
DE

estLx(s) ds,

∫
FG

estLx(s) ds.

We will show that when r → 0 and R → ∞ the contribution of the latter two integrals is
provided by

2π iFα(t) =
∫ ∞

0
e−rtKα(r) dr, t > 0,

where Kα(t) will be defined later, while the first integral tends to
∫
γ

estLy(s) ds. Denote
Gα(t) = ∑

Re s{estLy(s)}, t � 0. Then,∫
γ

estLy(s) ds + 2π iFα(t) = 2π iGα(t),
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i.e.

y(t) = Gα(t) − Fα(t), (38)

and we need to calculate Fα and Gα .
First we calculate Fα(t). Let s = r eiπ on DE and s = r e−iπ on FG, |r| > 0. Then∫

DE

estLy(s) ds +
∫

FG

estLy(s) ds

=
∫ R

ε

e−tr (ln br + iπ)(−ar − 1)(y0(−r) + v0 + ĥ(−r))

(r2 + ω2)(ln br − iπ)(−ar − 1) + λβ(ln ar − iπ)(−br − 1)
dr

−
∫ R

ε

e−tr (ln br − iπ)(−ar − 1)(y0(−r) + v0 + ĥ(−r))

(r2 + ω2)(ln br + iπ)(−ar − 1) + λβ(ln ar + iπ)(−br − 1)
dr.

Letting R → ∞ and ε → 0, it follows that

Fα(t) = βλ ln
a

b

∫ ∞

0
e−tr A

B
dr, (39)

where

A = (ar + 1)(br + 1)[−y0r + v0 + ĥ(−r)],

B = [(r2 + ω2)(ar + 1) ln br + λβ(br + 1) ln ar]2 + π2[(r2 + ω2)(ar + 1) + λβ(br + 1)]2.

Further, let F1(s) = y0s + v0 + ĥ(s). Then by (17) ŷ(s) = F1(s)

F (s)
and two simple zeros of F(s)

are the only singularities of est ŷ(s). Thus,
2∑

i=1

Re s{est ŷ(s)} =
2∑

i=1

esi tF1(si)

F ′(si)
. (40)

Since F(s) = s2 + ω2 + λβ ln(as)

ln(bs)
bs−1
as−1 it follows that F ′(s) = F ′(s). To write (40) in more

explicit form, suppose that ĥ(s) = ĥ(s). Then F1(s) = F1(s) and (40) may be written as
2∑

i=1

Re s{est ŷ(s)} = 2e−�t

[Re(F ′(s1))]2 + [Im(F ′(s1))]2

×{Re[F1(s1)F
′(s1)] cos �t + Im[F1(s1)F

′(s1)] cos �t}, (41)

where s1,2 = � ± i�,� < 0,� > 0. Therefore, the solution has the form

y(t) = 2e−�t

[Re(F ′(s1))]2 + [Im(F ′(s1))]2
{Re[F1(s1)F

′(s1)] cos �t

+ Im[F1(s1)F
′(s1)] cos �t} − βλ ln

a

b

∫ ∞

0
e−tr A(r)

B(r)
dr. (42)

Remark 4. Equation (1) could be generalized by changing the integration limit so that∫ 2

0
φσ (γ )σ (γ )(x, t) dγ =

∫ 2

0
φε(γ )ε(γ )(x, t) dγ. (43)

The body described by (43) may be viewed as consisting of viscoelastic and viscoinertial
elements [15]. If we take φσ (γ ) = aγ , φε(γ ) = �bγ , then by applying the Laplace transform,
instead of (18), we obtain

F̂ (s) = s2 + ω2 + λβ
ln(as)

ln(bs)

(bs)2 − 1

(as)2 − 1
.
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Also the explicit form of the constitutive equation, i.e., the solution of (43) with respect to σ ,
becomes

σ(t) = σ(t) = λφ̂1 ∗ φ̂2 ∗ y(t),

where

φ̂1 = L−1

(
ln as

ln bs

)
= δ(t) + ln

a

b

∫ ∞

0

tu−1b−u

�(u)
du,

φ2 = L−1

(
(bs)2 − 1

(as)2 − 1

)
=

(
b

a

)2

δ(t) +
b2 − a2

a4
sinh

t

a
.

The constitutive equation (43) is a generalization of relation (1) since (43) takes both
viscoelastic and viscoinertial effects.

4. Conclusions

In this work, we studied vibrations of a single mass attached to a viscoelastic rod described
by a fractional type, distributed-order constitutive equation and loaded with an arbitrary force
h(t). The motion of the system is described by the system of equations

y(2)(t) + ω2y + βσ(t) = h(t),

∫ 1

0
aγ σ (γ )(t) dγ = λ

∫ 1

0
bγ y(γ )(t) dγ, (44)

subject to

y(0) = y0, y(1)(0) = v0. (45)

We showed for this system the following:

1. The solutions y(t), σ (t) exist and they are elements of S ′
+ and K′

+, respectively. The form
of σ(t) is given, explicitly, as (27).

2. If the relaxation times a and b for stress and strain, respectively, satisfy the restrictions
following from the second law of thermodynamics 0 < a < b, we showed that the zeros
of the function (18) are in the open left half-plane of the complex plane. This, together
with the assumption that the forcing term h(t) is equal to 0, implies that the solution has
the form (42) representing viscously damped phase-shifted oscillation (41) superposed
on the part that ‘dies out’ with time (39).

3. The stress–strain relation following from (13) is given by (27) and reads

σ(t) = λφ1 ∗ φ2 ∗ y(t) = λ

[
b

a
y(t) +

∫ t

0

b − a

a2
e(t−ξ)/ay(ξ) dξ

+
b

a
ln

a

b

∫ t

0
y(τ)

(∫ ∞

0

(t − τ)u−1b−u

�(u)
du

)
dτ

+
b − a

a2
ln

a

b

∫ t

0
e(t−ξ)/ay(ξ)

(∫ ∞

0

(t − τ)u−1b−u

�(u)
du

)
dτ

]
. (46)

In the special case when a = b, the constitutive equation (13) describes an elastic body
(see [4] p 690). By substituting a = b into (46), we obtain

σ(t) = λy(t), (47)

i.e., the viscoelastic rod becomes an elastic rod.
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Figure 3. Qualitative properties of the functions Fα(t) and Gα(t).

4. The impulse response of the oscillator is obtained if we take y0 = v0 = 0, h(t) = δ(t) so
that ĥ (r) = 1. The function y(t) in this case becomes

y(t) = Gα(t) − Fα(t),

where

Gα(t) = 2e−�t

[Re(F ′(s1))]2 + [Im(F ′(s1))]2
{Re[F1(s1)F

′(s1)] cos �t

+ Im[F1(s1)F
′(s1)] cos �t}; (48)

Fα(t) = −βλ ln
a

b

∫ ∞

0

e−tr (ar + 1)(br + 1)

B
dr.

Qualitatively the solution (48) is presented in figure 3. The function y(t) could be used
to obtain solution yh(t) for arbitrary h(t) by forming the convolution y(t) ∗ h(t).

5. The solution of the distributed-order viscoelastic oscillator has the qualitative properties
of the single-order oscillator studied in [18], by a different method.
It would be interesting to examine the solution in the case of a periodic forcing function,
for both single and distributed-order fractional oscillators, as well as coupled systems of
differential equations, treated in [25].

6. The results obtained here can be applied in linear viscoelasticity as well as in other areas
where distributed-order differential equations arise. For equations of the types (12)–(14)
in system identification theory, see, for example, [15].
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Appendix

Recall [16, 1], K(R) is the space of smooth functions φ with the property

sup{ek|x||φ(α)(x)|; x ∈ R, α � k} < ∞, k ∈ N0. (A.1)

Its dual is the space of exponentially bounded distributions K′(R) and elements of K′(R)

are of the form f = ∑r
α=0 �(α)

α , where �α are continuous functions with the property
�α(t) � C ek0|t |, α � r, t ∈ R, for some C > 0, r ∈ N0 and some k0 ∈ N0. K′

+(R) = K′
+ is a

subspace of K′(R) consisting of elements supported by [0,∞); its elements are of the form

f = (ekxF (x))(p), x ∈ R, (A.2)
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where F is a continuous bounded function such that F(t) = 0, t � 0. This implies that
f = (ekxF (x))(p), for some F ∈ S ′

+, k � 0 and some p ∈ N0.
Recall [24], that, if we take (1 + x2)k/2 instead of ek|x| in (A.1) we obtain well-known

S(R) and related spaces S ′(R) and S ′
+. Clearly, these spaces are subspaces of K′(R) and K′

+,

respectively.
The construction implies that elements of K′

+ have the Laplace transformations, that is, if
f is of the form (A.2), then its Laplace transform Lf is an analytic function in the domain
Re s > k.
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[13] Erdély A, Magnus W, Oberhettinger F and Tricomi F G 1954 Tables of Integral Transforms vol I (New York:

McGraw-Hill)
[14] Gorenflo R and Mainardi F 1997 Fractional Calculus in Continuum Mechanics ed A Carpinteri and F Mainardi

(Wien: Springer) p 223
[15] Hartely T T and Lorenzo C F 2003 Signal Process. 83 2287
[16] Hasumi M 1961 Tohoku Math. J. 13 94
[17] Mainardi F 1996 Chaos Solitons Fractals 7 1461
[18] Narhari Achar B N, Hanneken J W, Enck T and Clarke T 2001 Physica A 297 361
[19] Narhari Achar B N, Hanneken J W, Enck T and Clarke T 2002 Physica A 309 275
[20] Pilipovic S and Stojanovic M 2004 Math. Notes (Mat. Zametki) 75 135
[21] Rossikhin Yu and Shitikova M V 2001 Z. Angew. Math. Mech. 81 363
[22] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives (Amsterdam: Gordon and

Breach)
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